
LEFTIST COOPERATIVE DISTRIBUTED GRAMMAR SYSTEMS

Filip Goldefus
Doctoral Degree Programme (4), FIT BUT

E-mail: xgolde00@stud.fit.vutbr.cz

Supervised by: Alexander Meduna
E-mail: meduna@fit.vutbr.cz

Abstract: This paper discusses extension of Cooperative Distributed Grammar Systems (CDGS)
with leftist-grammars as components. We investigate the descriptive power of Leftist Cooperative
Distributed Grammar Systems (LCDGS) with terminating derivation mode. It arises, that LCDGS are
more powerful than general CDGS with context-free grammars as components.. Especially CDGS of
degree 2 with context free grammars as components working in terminating mode are as powerful as
context-free grammars, contrary languages accepted by LCDGS of degree 2 are superset of context-
free grammars and are included in Church Rosser Languages (CRL).

Keywords: Cooperative Distributed Grammar Systems, Leftist Grammars, Restarting Automata,
Generative Power

1 INTRODUCTION

The restarting automaton was introduced by Jančar et. al. (in [2]), this model describes analysis
by reduction and is capable of describing the family of Church Rosser family of languages. This
paper continues with investigation of cooperative distributed grammar systems (CDGSs), which are
devices consisting of several cooperating components represented by grammars or other rewriting
mechanisms that work in some prescribed derivation modes (the reader is referred to [7] for more
information). The components of leftist cooperative distributed grammar systems are leftist gram-
mars (see [5]) used for decidability of accessibility problems. Using leftist grammars without insert
productions, which are less powerful than context-free gammars, in cooperative distributed gram-
mar system suprisingly led to increase of generative power. This system can be used for deciding
reachability problem with multiple independent agents (components).

2 PRELIMINARIES AND DEFINITIONS

In this paper, we assume that the reader is familiar with formal language theory (see [1]) . For a finite
nonempty set (an alphabet) V , let V ∗ represent the free monoid generated by V . Let the unit of V be
denoted by ε, and let V+ =V ∗−{ε}. For w ∈V , let |w| denote the length of w, al ph(w) denote the
set of all symbols occurring in w. The i-th symbol of w is denoted by w[i], with 0 < i≤ |w|.

A restarting automaton (see [3]), RRWW-automaton for short, is a construct

M = (Q,Γ,Σ,δ,B,C,k,q0),

where Q is a set of states, Γ and Σ ⊆ Γ are tape and input alphabets, B,C 6∈ Γ are the markers
for the left and right border, qo ∈ Q is the initial state, k ≥ 1 is a size of read/write window, and
δ : Q× γ≤k→ P (Q× ({MV R}∪ γ≤k ∪{Restart})∪{Accept}, is a transition relation, P denotes the
powerset of a set S, and γ≤k = (BΓ≤k−1)∪Γ≤k∪ (Γ≤k−1C)∪ (BΓ≤k−2C) denotes the set of possible
contents of read/write window of M, where Γ≤n =

⋃n
i=0 Γi.

The transition relation describes four different types of transition steps:

1. A move-right step, (r,MV R) ∈ δ(q,u), where q,r ∈ Q and u ∈ γ≤k−{C}. If M is in state q
and sees the string u in its read/write window, then this move-right step causes M to shift the
read/write window one position to the right and to enter the state r.

2. A rewrite step is of the form (r,v) ∈ δ(q,u), where q,r ∈ Q and u ∈ γ≤k−{C} and v ∈ γ≤k−1

such that |u| ≥ |v|. It causes M to replace the contents of u of the read/write window by the
string v, and to enter state r. The read/write window is placed immediately to the right of the
string v.

3. A restart step is of the form (Restart) ∈ δ(q,u), where q,r ∈ Q and u ∈ γ≤k. It causes M to
move its read/write window to the left end of the tape, so that the first symbol it sees is the left
border marker B , and to reenter the initial state.

4. An accept step is of the form Accept ∈ δ(q,u), where q ∈ Q and u ∈ γ≤k. It causes M to halt
and accept.

An input w ∈ Σ∗ is accepted by M, if there exists a computation of M which starts with the initial
configuration q0 BwC, and which finally ends with executing an accept step. By L(M) we denote the
language accepted by M.

A nonforgetting restarting automaton M (see [4]), nf-RRWW-automaton for short, consists of three
phases: 1. scan the tape, 2. perform a rewrite operation, 3. execute a restart step. A restart step is of
the form (r,Restart)∈ δ(q,u), where q,r ∈Q and u ∈ γ≤k. It causes M to move its read/write window
to the left end of the tape, so that the first symbol it sees is the left border marker C , and to enter a
state r. By Ln f−RRWW we will denote the class of languages that are accepted by nf-RRWW-automata.
For a nf-RRWW-automaton M, the first phase of each cycle consist only of MVR-steps, that is, during
this phase M behaves just like a (one-way) finite-state acceptor. Thus, the transition relation of M can
be described more compactly by so-called meta-instructions.

A meta-instruction for an nf-RRWW-automaton M is either of the form (p1,E1,u→ v,E2, p2) or
(p1,E1,Accept), where p1, p2 ∈ Q , E1 and E2 are regular expressions, and u,v ∈ Γ∗ are words satis-
fying |u| ≥ |v|, which stand for a rewrite step of M. To execute a cycle M chooses a meta-instruction
of the form (p1,E1,u→ v,E2, p2). On trying to execute this meta-instruction M will get stuck (and
so reject) starting from a configuration p1 BwC, if w does not admit a factorization of the form
w = w1uw2 such that Bw1 ∈ E1 and w2C ∈ E2. On the other hand, if w does have factorizations of
this form, then one such factorization is chosen nondeterministically, and p1 BwC is transformed
into p1 Bw1vw2C. In order to describe the tails of accepting computations we use meta-instructions
of the form (p1,E1,Accept), where the strings from the regular language E1 are accepted by M in
tail computations, that is, without a restart. As an nf-RWW-automaton restarts immediately after ex-
ecuting a rewrite operation, the meta-instructions describing cycles of such an automaton are of the
simplified form (p1,E1,u→ v, p2). By Ln f−RWW will denote the class of languages that are accepted
by nonforgetting RWW-automata.

A leftist grammar without insert productions (with delete productions only) is a touple G = (Σ,P,x),
where Σ is a finite set of symbols, P is a finite set of productions of the form ab→ b, where a,b ∈ Σ,
and a final symbol x ∈ Σ. A derivation step using a production ab→ b ∈ P is defined as uabv⇒ ubv,
where u,v ∈ Σ∗. We say that the symbol b in the delete rule ab→ b is active. As usual, the relation⇒
is extended to⇒n, for n≥ 0,⇒+, and⇒∗. The language accepted by the leftist grammar M is defined
as L(M) = {w ∈ Σ∗ : wx⇒∗ x}. Without loss of generality, we assume applying all productions on
the leftmost possible symbols in the sentential form during a derivation (see [3]), i.e. uabv⇒ ubv
in G using a production ab→ b ∈ P and 6 ∃cd→ d ∈ P such that u = u1cdu2, where u,v,u1,u2 ∈ Σ∗.
Let u1⇒ u2⇒ . . .⇒ up be a derivation. A symbol u1[i] is alive in u1 with respect to the derivation

u1⇒∗ up if there exists j ≤ i such that u1[j] is active with respect to u1⇒ u2⇒ . . .⇒ up. A symbol
which is not alive is gone.

For any two strings u,v ∈V ∗, define the relation u terminally derives v in a leftist grammar G, written
as u⇒t v provided that u⇒∗ v in G and 6 ∃w ∈ V ∗ such that v⇒ w in G. A leftist cooperating
distributed grammar system of degree n is (n+2)-touple ∆ = (Σ,x,P1,P2, . . . ,Pn), where Σ is a finite
set of symbols, x ∈ Σ is a final symbol and each set P1,P2, . . . ,Pn contains leftist productions (each
component Gi =(Σ,Pi,x) is a leftist grammar), for i= 1, . . . ,n. A derivation step of the i-th component
using a production ab→ b ∈ Pi is dentoed by uabw⇒i ubw for an integer 1≤ i≤ n and u,v ∈ Σ∗, i.e.
by the leftist grammar Gi.

We say that ∆ accepts w ∈ T ∗ in the t-mode (terminating mode), provided that there exist m≥ 1 and
αi ∈V ∗, for i = 1, . . . ,k, such that αi⇒t αi+1 in Hi, where Hi ∈ {G1, . . . ,Gn} is a component of ∆, for
i = 1, . . . ,m−1, α1 = wx and αm = x. Symbolically, wx⇒t

∆
x. As usual, ∆ is omitted whenever the

meaning is clear. The language generated by ∆ in t-mode is defined as L(∆, t) = {w ∈ T ∗ : wx⇒t
∆

x}. The family of languages generated by leftist cooperating distributed grammar systems with n
components working in the t-mode is denoted by LLD(n). Let LCS,LCF ,LDCF and LLD denote the
families of context sensitive, context-free, deterministic context-free and leftist languages (accepted
by leftist grammars without insert productions).

3 MAIN RESULTS

First, the following theorem proves that language family accepted by leftist grammars without insert
productions are included in deterministic context-free languages family.

Theorem 1. LLD ⊆ LDCF .

Proof. See [3]. The proof uses simulation of a leftist grammar by a deterministic pushdown automa-
ton.

Theorem 2. LLD 6⊆ LREG.

Proof. See [3]. The proof shows that a context free language L = {unvm : u = a1a0,v = b0b1,m≥ n}
is accepted by a leftist grammar and L 6∈ LREG.

Theorem 3. LLD(2) 6⊆ LCF .

Proof. We describe a leftist cooperating distributed grammar system ∆ = (Σ,x,P1,P2) of degree 2
working in t-mode, which generates a non-context-free language. Let Σ = {a0,a1,b0,b1,c0,c1},

P1 = {a1b0→ b0,b1c0→ c0,c1x→ x}

and
P2 = {a0b0→ b0,b0c0→ c0,c0x→ x}.

Now, let u = a0a1,v = b0b1 and w = c0c1. We make the following observation

unvnwn ∈ L(∆, t)⇔ n≥ 0.

The implication⇐ is obvious. The second implication follows from two observations:

• each derivation step x⇒t
1 y of ∆ deletes symbols a1,b1 and c1 in the sentential form u, the

rightmost symbol a1 is deleted by the leftmost symbol b0, the righmost symbol b1 is deleted by
the leftmost symbol c0 and the rightmost symbol c1 is deleted by the final symbol x;

• each derivation step x⇒t
2 y of ∆ deletes symbols a0,b0 and c0 in the sentential form u, the

rightmost symbol a0 is deleted by the leftmost symbol b0, the righmost symbol b0 is deleted by
the leftmost symbol c0 and the rightmost symbol c0 is deleted by the final symbol x.

So, the language u∗v∗w∗∩L(∆, t) is equal to non-context-free language {unvnwn : n≥ 0}. As the set
of context-free languages are closed under intersection with a regular language, the language L(G) is
non-regular as well.

Theorem 4. LLD(2)⊆ Ln f−RWW .

Proof. Let ∆ = (Σ,x,P1,P2) be a leftist cooperating distributed grammar system. So, one can design
a nonforgetting restarting automaton M = (Q,Γ,Σ,δ,B,C,k,q0) such that L(M) = L(t,∆), with Q =
{q0,q1,q2},Γ = Σ, k = 2 and these meta-instructions:

1. if ab→ b ∈ Pi then add (restarting) meta-instruction (qi,BΣ∗,ab→ b,qi) for i ∈ {1,2},

2. add meta-instructions (qi,BΣ+,xC→ xC,q j), for j ∈ {1,2} and i ∈ {0,1,2}.

3. add meta-instructions (qi,BxC,Accept) for for i ∈ {1,2}.

Informally, M simulates a derivation of ∆ so if sentential form w of ∆ contains ab, ab→ b ∈ Pi, and
state of M is qi (i-th component is active), then w= uabv is rewritten by a meta-instruction constructed
in (1), (qi,BΣ∗,ab→ b,qi), in one cycle and configuration is qi B ubvC. If there is no applicable
meta-instruction from (1), consider a configuration qi B xC of M, meta-instruction (qi,BxC,Accept)
is applied, then word w is accepted. If M is in configuration qi B uxC, where u ∈ Σ+, then meta-
instruction from (2) is applied and qi B uxC⇒ q j B uxC, with i, j ∈ {1,2}. So, the component i is
switched to j, there is no meta-instruction from (1) corresponding to a production from Pi applicable.

To prove that L(M)⊆ L(t,∆) consider a derivation qi BwC⇒ qi BuC in M, where qi ∈Q and w,u ∈
Σ∗. We prove that w⇒t

i u in ∆. Assume that qiBwC⇒ qiBuC by a meta-instruction (qi,BΣ∗,ab→
b,qi) constructed in (1), i.e. w = w1abw2, for w1,w2 ∈ Σ+ and

qi Bw1abw2C⇒ qi Bw1bw2C

in ∆. Then, w1abw2⇒t
i w1bw2 by i-th component of ∆ using production ab→ b ∈ Pi. If u = w then

a meta-instruction (qi,BΣ+,xC→ xC,qi) constructed in (2) is applied. Now, consider qi BwC⇒
q j BwC in M using a meta-instruction (qi,BΣ+,xC→ xC,q j) constructed in (2), with j 6= i, then
there is no meta-instruction constructed in (1) applicable and |w| ≥ 2. This corresponds to switching
from component i to j in ∆. Finally, consider configuration qi B xC of M, only meta-instruction
(qi,BxC,Accept) constructed in (3) is applicable, word w such that q1 BwxC⇒ qi B xC in M is
accepted, this corresponds to wx⇒t

∆
x in ∆. Clearly, M simulates a derivation of G so that it starts by

a meta-instruction constructed in (2), i.e., q0 BwxC⇒ q j BwxC, for any j ∈ {1,2}. The derivation
then proceeds as shown above. Hence, the inclusion holds.

On the other hand, to prove that L(t,∆) ⊆ L(M) consider a derivation w⇒t
i v , where w,v ∈ Σ+and

i∈ {1,2}. So, w = w1⇒i . . .⇒i wn+1 = v using a sequence of productions p1, . . . , pn ∈ Pi in ∆. Then,

qi Bw1C⇒ . . .⇒ qi Bwn+1C

in M using meta-instructions constructed in (1) corresponding to a sequence of productions p1, . . . , pn,
i.e. (qi,BΣ∗, p,qi). Finally, for v = x, where x is final symbol, ∆ accepts and qiBxC is accepting con-
figuration after applying a production constructed in (3). after each derivation step w⇒t

i v component
of ∆ is switched, i.e. w⇒t

i v⇒t
j u, with j 6= i, this is realized by a meta-instruction constructed in (2).

The proof now proceeds by induction.

Corollary 5. LLD(n)⊆ Ln f−RWW , for n≥ 2.

Proof. Proof is similar to the proof of the previous lemma, the nonforgetting restarting automaton M
is constructed in the same way, a set of states Q contains states q0, . . . ,qn for each component of the
simulated leftist cooperating distributed grammar system ∆.

4 CONCLUSION

Denote LCR the family of Church Rosser Languages ([6]). Recall (see [3]),

LL ⊂ LCF ⊆ LLD(2)⊆ Ln f−RWW ⊆ LCR ⊆ LCS.

5 ACKNOWLEDGEMENTS

This work was supported by the research plan "Security – Oriented Research in Information Technol-
ogy", MSM 0021630528.

REFERENCES

[1] John Hopcroft and Jeffrey Ullman. Introduction to Automata Theory, Languages, and Computa-
tion. Addison-Wesley, Reading, MA, USA, 1979.

[2] Petr Jancar, Frantisek Mráz, Martin Plátek, and Jörg Vogel. Restarting automata. In Proceedings
of the 10th International Symposium on Fundamentals of Computation Theory, pages 283–292,
London, UK, 1995. Springer-Verlag.

[3] Tomasz Jurdziński and Krzysztof Loryś. Leftist grammars and the chomsky hierarchy. In Maciej
Liskiewicz and Rüdiger Reischuk, editors, Fundamentals of Computation Theory, volume 3623
of Lecture Notes in Computer Science, pages 293–304. Springer Berlin, 2005.

[4] Hartmut Messerschmidt and Friedrich Otto. On nonforgetting restarting automata that are de-
terministic and/or monotone. In Dima Grigoriev, John Harrison, and Edward Hirsch, editors,
Computer Science, Theory and Applications, volume 3967 of Lecture Notes in Computer Sci-
ence, pages 247–258. Springer Berlin, Heidelberg, 2006.

[5] Rajeev Motwani, Rina Panigrahy, Vijay Saraswat, and Suresh Ventkatasubramanian. On the
decidability of accessibility problems (extended abstract). In Proceedings of the thirty-second
annual ACM symposium on Theory of computing, STOC ’00, pages 306–315, New York, NY,
USA, 2000. ACM.

[6] Gundula Niemann and Friedrich Otto. The church-rosser languages are the deterministic variants
of the growing context-sensitive languages. Inf. Comput., 197:1–21, February 2005.

[7] Grzegorz Rozenberg and Arto Salomaa, editors. Handbook of formal languages, vol. 2: linear
modeling: background and application. Springer-Verlag New York, Inc., New York, NY, USA,
1997.

